THE ROLE OF RODENTS AS RESERVOIRS OF ZOONOTIC PATHOGENS ALONG BWINDI IMPENETRABLE NATIONAL PARK BOUNDARY

Mawanda Patrick MSc Zoology (Parasitology) College of Natural sciences (MAK) Dept. of Biosciences

Back ground

- More than 70% of emerging infectious diseases implicate vectors and reservoirs in their transmission cycle
- Rodents (42% of mammals) have been pointed out as reservoirs of zoonotic agents e.g. fleas vector *Y. pestis*
- Rodents' success in parasite transmission is due to their flexible ecology
- This ecological flexibility makes them better hosts for parasites

Back ground cont

- Majority of the parasites are pathogens of important socio-economic diseases in humans & wildlife
- People around the park also supplement their existence with forest resources
- This results into maximum interaction among rodents, the forest wildlife and humans

Problem statement

- Veterinary & public health importance of rodents has received insufficient attention
- Domestic species have been most studied but little is known about the wild species
- Therefore the biodiversity and prevalence of parasites on rodents needs to be investigated
- Rodents' reservoir and vector potentials also need to be evaluated

Objectives

• Main objective

To investigate the role of rodents as reservoirs of zoonotic pathogens along the park boundary

• Specific objectives

- To determine the relative abundance and distribution patterns of rodent species
- To determine the biodiversity and prevalence of parasites hosted by the rodents

Research questions & significance

Research questions

- What are the distribution and species specific habitat utilisation patterns of the rodents
- What is the prevalence of ecto and endo parasites among the rodents

Significance of study

- Ecological data will be a basis for designing an ecosystem health approach to prevention of zoonoses
- Study will provide data on potential zoonotic parasites on rodents and common associated pathogens

Methods & materials

Study area

- Bwindi I. N. P
 - Ruhija, Buhoma and
 Nkuringo.
- Bwindi is a world heritage site with human population of 300/sq km
- Approx half of mountain gorillas in the whole world live here

RODENT COLLECTION SITES ALONG BWINDI NATIONAL PARK BOUNDARY

Methods and materials cont

Trapping of rodents

Traps: Sharman & Tomahawk live traps

Bait:

combination of maize flour, roasted powdered ground nuts, fish and sweet potatoes

Methods & materials cont

- A trap web (4 transects, 200m @, 80 trap stations, 120 traps) was set at park boundary
- Two trap webs were set per study area
- Traps were inspected for 6 days and then 4 after an extension of 2 transects by 200 m
- For each area, 1920 trap nights
- Traps were baited once in the evening & inspected in the morning & evening of the following day

Materials & methods cont Rodent processing

- Rodents captured were identified, weighed, sexed, brushed to collect ectoparasites and their fecal collected
- Rodents were marked by toe clipping & released at the point of capture
- The GPS & dominant vegetation around the trap stations was recorded

Methods & materials cont.

Laboratory processing

- Ectoparasites were depigmented, dehydrated, cleared, & mounted in DPX for identification
- Faecal samples were concentrated using formal-ether concentration techniques & examined for endoparasites
- Pathogen prevalence was determined for each species

Data analysis

Abundance & distribution

 Relative abundance, Shannon diversity index & species evenness were calculated

Ecological characteristics

- Whittaker plots were used to find out the model of species abundance adapted by the rodents
- Community coefficients were calculated to determine the degree of habitat similarity

Pathogen prevalence

- Parasite prevalence & host preference were determined
- Relationship between parasite & rodent abundances were analysed using Spearman rank coefficient
- Difference in parasite abundance was tested using Kruskal wallis test

Results

Species Richness per Study Area compared with the level of Habitat Disturbance

Study Area	Species richness	Diversity index	Level of habitat disturbance
Ruhija	11	0.73	moderate
Nkuringo	20	0.97	High
Buhoma	11	0.79	Low

Results: Diversity of Rodents

Rodent species

Distribution of rodent species from the park boundary

1.00-(0-29 m) 2.00-(30-59 m) 3.00-(60-89 m) 4.00-(90 m >)

Results: Ectoparasite Biodiversity

Fleas (12.1%) (9 species)	Mites (84.6%) (5 species)	Ticks (0.8%) (2 species)	Micro snails (2.5%)
Ctenophalides felis	Dermanyssus gallinae	Haemaphysalis leachi	Not identified
Libyastus infestus	Echinolaelaps echidninus	Rhipicephalus lunulatus	
Nesopsyllus fasciatus	Laelaps nuttali		
Stivalius torvus	Haemolaelaps glasgowi		
Ctenophthalmus cabirus	Eulaelaps stabularis		
Leptopsylla aethiopicus			
Xenopsylla braziliensis			
Libyastus hopkinsi			
Ctenophalides canis			

Fleas

Ctenophalides felis

Nesopsyllus fasciatus

Stivalius torvus

Libyastus infestus

Libyastus hopkinsi

Ctenophalide cains

Leptopsylla aethiopicus

Ctenophthalmus caphurus

Xenopsylla brazilliensi

Mites

Haemolaelaps glasgowi

Laelaps nuttali

Echinolaelaps echidninus Eulaelaps atabularia

Dermanyssus gallinae

Ticks

Haemaphysalis Ieachi

Rhipicephalus

lunulatu

Microsnail

Ectoparasite load per species

Rodent species

Host preference among ectoparasites using specific indexes

	Host															
Ectoparasites	Рj	Hu	Lf	Rr	Mb	Mt	Hv	Lw	Ls	Lb	Pd	Oh	Di	MI	Hs	Gd
Ctenophalides canis	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0
Ctenophalides felis	66.7	0	33.3	0	0	0	0	0	0	0	0	0	0	0	0	0
Ctenophthalmus cabirus	0	0	25	0	0	25	0	0	50	0	0	0	0	0	0	0
Dermanyssus gallinae	58.8	0	0	0	0	0	0	0	0	0	35.3	0	5.9	0	0	0
Echinolaelaps echidninus	55.4	4.5	6.3	4.5	8.9	0	8	0	0	0	6.3	0	0	0	5.4	0.9
Eulaelaps stabularis	0	0	20	0	0	0	0	0	80	0	0	0	0	0	0	0
Haemaphysalis leachi	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Haemolaelaps glasgowi	0	62.5	12.5	0	0	0	0	0	25	0	0	0	0	0	0	0
Laelaps nuttali	8.2	14.8	19.7	0	3.3	0	9.8	0	24.6	4.9	1.6	3.3	9.8	0	0	0
Libyastus hopkinsi	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0
Libyastus infestus	16.7	16.7	16.7	0	0	0	33.3	16.7	0	0	0	0	0	0	0	0
Leptopsylla aethiopicus	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Microscopic snail	33.3	0	33.3	0	0	0	0	0	0	0	0	0	33.3	0	0	0
Nesopsyllus fasciatus	25	0	50	0	0	0	0	0	0	0	0	0	0	25	0	0
Rhipicephalus lunulatus	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0
Stivalius torvus	14.3	28.6	14.3	14	0	0	0	14.3	0	0	14.3	0	0	0	0	0
Xenopsylla braziliensi	0	0	0	50	0	0	0	0	0	0	0	0	50	0	0	0

Endoparasite Biodiversity

Endoparasite genera

No. of endoparasite species per rodent species

No. of endopara. Sp

Zoonotic Significance of the Parasites

Parasite	Zoonotic agent	Disease caused		
<u>Mites</u>				
L. echidninus &	Yersinia pestis	Plague		
L.nuttalli	Coxiella burnetti	Q. fever		
	Orienatal tsutsugamushi	Scrub typhus		
	Leptospira interrogan	Leptospirosis		
D. gallinae	Encephalitis viruses	Encephalitis		

H. glosgowi	Lymphocytic	Lymphocytic		
	choriomeningitis virus	choriomeningitis		
	Coxiella burnetti	Q. fever		
	Rickettsia sibirica	North Asian tick		
		Typhus		
	Francisella tularensis	Tularemia		
	Hantaan virus	Epidemic		
		Haemorrhagic Fever		

Fleas		
X. braziliese,	Yersinia pestis	Plague
C. felis & C. canis	Yersinia pestis	Plague
<u>Ticks</u>		
H. leechi	Rickettsia canorii	Typhus
Endoparasites		
Cryptosporidium		Cryptosporidiosis
Hymenolepis		Intestinal damages

Conclusions & Recommendations

- Rodents host a wide range of zoonotic pathogens
- Single infections are more common than mixed
- Proliferation of rodent populations are enhanced by environmental and socio-economic factors
- Park managers should integrated comprehensive & participatory rodent control strategies in management plans e.g. wastes management
- An investigation of the occurrence of rodent borne diseases among dwellers is needed to know the epidemiological pattern these diseases

Acknowledgements

- Supervisors
 - Dr. Innocent B. Rwego
 - Dr. Joseph Kisakye
- Makerere University
- Uganda National Council of Science and Technology
- ITFC

THANK YOU FOR LISTENING.