# POTENTIAL INVASIVE ALIEN PLANT SPECIES IN SEMULIKI NATIONAL PARK, UGANDA





**Presented by** 

**Baguma J. Brian** 

**Supervisors** 

Dr. Mucunguzi Patrick. Dr. Douglas Sheil.

### Introduction

- Alien invasive species (AIS) can be plants or animals which are non native (or alien) to the ecosystem under consideration (CBD, 2004. www.biodiv.org).
- > They displace native species (Heutte and Bella, 2003)
- > AIS are increasingly recognised as a threat to conservation values (Baskin, 2002)
- Alien invasive species (AIS) may cause economic or environmental harm (Executive Order 1999).

> Over the past few decades, due to rapid increase in forest disturbance and changes in land use (Richardson, 1997). **Background cont....** 

# **Impacts to ecosystem**

> Altered recruitment of native plants

Increased resource competition (Doria,1998).

Altered hydrological cycling

Disturbance altered

Altered forest structure



**Invasive Alien Plant species in Uganda** 

Eichhornia crassipes (Mart Solms) water hyacinth on L.Victoria (Famous).

- Lantana camara (L), common in QENP
- Acacia hockii (De Wild), common in L. Mburo NP.
- Mimosa pigra (L),
- Chromolaena odorata (R.M. King and H. Rob),

### IAPS in Uganda cont...

• Cestrum noctunum (Larmak),



- *Senna spectabilis* (H.S. Irwin and Berneby) common in Budongo forest and Kibale Forest NP.
- *Striga hermonthica* (Del) Benth., *Striga asiatica* (L.) Kuntze or witch weed which reduces cereal yields,
- *Cymbopogon nardus* (Rendle) that diminishes the productivity of grazing lands.

Uganda has been invaded by a new IAPS Parthenium hysterophoru (L) (Congress weed).

> entered Uganda through Kenya 4years ago

12 districts where detected; Busia, Namutumba, Bugiri, Tororo, Mbale, Jinja, Mbarara, Ibanda, Masaka, Kampala, Kabale and Kasese (International Parthenium news, 2010).

# Alien Plant Species in SNP The study selected six (6) APS present in the park

| Species Name                                  | Family                       | Common Name    |
|-----------------------------------------------|------------------------------|----------------|
| Cedrela odorata L.                            | Meliaceae                    | American cedar |
| <i>Senna spectabilis</i> (DC.) H. S.<br>Irwin | Fabaceae<br>Caesalpinioideae | Cassia         |
| and R. C. Barneby                             |                              |                |
| Theobroma cacao L.                            | Sterculiaceae                | Cocoa          |
| <i>Coffea canephora</i> Pierre ex A.          |                              |                |
| Froehner                                      | Rubiaceae                    | Robusta coffee |
| Psidium guajava (Linnaeus,                    |                              |                |
| 1753)                                         | Myrtaceae                    | Guavas         |
| Ananas comosus (L) Merrill                    | Bromeliaceae                 | Pineapples     |

**Ecology of selected alien plant species in SNP** 

- > Cedrela odorata L.
- Native to the Americas.
- Known to be invasive in tropical regions of Africa (including Tanzania), and elsewhere.

### Picture of C. odorata plant



# A = Seedlings of C. odorata and B = big tree of C. odorata

S. spectabilis (DC.) H. S. Irwin and R. C. Barneby.

- A native of Tropical America,
- Introduced to Africa as an ornamental plant.
- It is exotic in Eritrea, Ethiopia, Kenya, Malaysia, Puerto Rico, Tanzania, Uganda, United States of America and Zambia.
- Has become invasive in tropical forests in many parts of Africa.

### **Picture of** Senna spectabilis



Look at the flowering effect out side the forest

C = Senna out side the forest D = Senna in side the forest

Theobroma cacao L.

- It is a native of America
- *T. cacao* is an understorey plant of wet humid tropic forests.
- It is an exotic species in Uganda and most countries in Africa.



Coffea canephora, Pierre ex A. Froehner

A native plant in upland forests in Ethiopia; and grows indigenously in Western and Central Africa.

• Native to the highlands of E. Africa, where it occurs in the eastern part of the DRC, Rwanda, Uganda, Kenya and western Tanzania.

Psidium guajava, Guavas (Linnaeus, 1753)

- Native to Central America
- Introduced to tropical and sub-tropical locations around the world for its edible fruit
- It invades disturbed, and to a lesser degree undisturbed sites (CONABIO 2003)

### Ananas comosus (Pineapples) (L.) Merrill

- Are known to have originated in South America.
- Pineapple is not found in nature but only found under cultivation (Collins, 1960) and currently within Australia it occurs almost exclusively as a managed fields.
- Invaded natural forest have some kind of human influence through cultivation and abandonment.



**Research problem Statement** 

Management of APS (pers comm.) in SNP has not been successful due to the inadequate information and limited attempts available for their management.

- Human disturbances, have aided the spread of APS populations thus impacting indigenous plant populations (pers comm.).
- > It is not clear if invasion is ongoing and significant in the intact forest, the disturbed areas of the park or in both.
- > No studies have been carried out to ascertain the invasion potential of AP in the park.
- Study carried out to assess which of the APS present in SNP have the potential of becoming invasive and persistent as the forest recovers from disturbance.

**Objectives of the Study** 

General objective



To assess the invasion potential and status of selected alien plant species in Semuliki National Park.

# Specific Objectives are;

- I. To determine the abundance/population density of selected alien plant species in Semuliki National Park.
- II. To determine the population structure and status of invasion of the selected alien plant species in the park.
- III. To determine the distribution pattern of the alien species in relation to environmental factors and disturbance history.

Contributed information for proper management of IAP in PAs.

> Advise all stake holders on APS control measures

Provided information management planning

Contributed information for other researchers

Guide policymakers on IAS control (quarantine)



### **METHODS**

# Study area description



- The study was carried out in SNP situated west of Uganda, in Bundibugyo District about 50 km from Fort Portal town.
- It lies on Uganda-Congo border within the northern part of the albertine Rift Valley as shown in Fig.1
- The geographical coordinates are 0°44'- 00 53' N 290 57-30° 11'E.
- To the southeast are the Rwenzori Mountains, and to the north Lake Albert.

#### SEMULIKI NATIONAL PARK

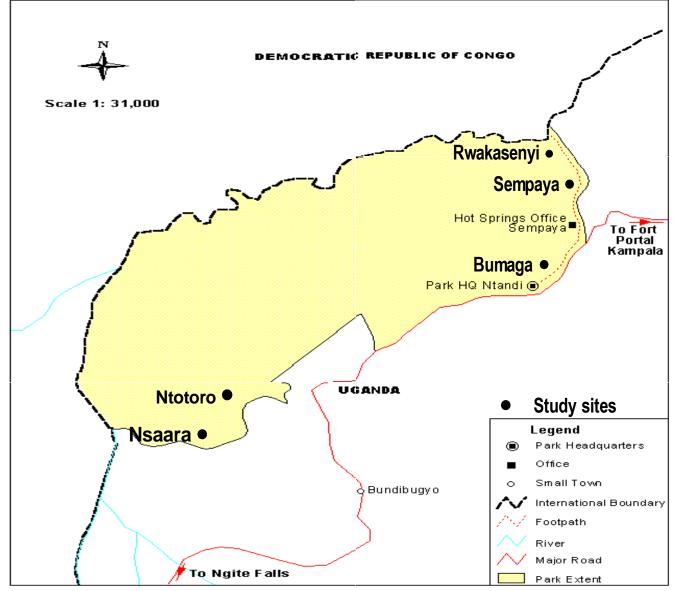


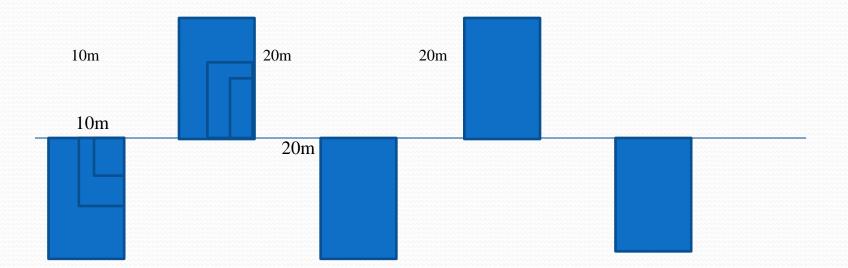

Fig: 1 Map showing sampling sites

#### Still working on the map using GPS coordinate

**General Study area description cont...** 

SNP covers approximately 220 km<sup>2</sup>

- Was gazetted in October 1993 as a National Park.
- Altitude is 670 -760m asl with flat to gently undulating landform.
- Annual rainfall is 1250 mm with peaks from Mar to May and Sep and Dec. Temp varies from 18° C - 30° C with relatively small daily variations.
- Vegetation of SNP moist evergreen to semi deciduous forest. The dominant plant species is *Cynometra alexandri*.


**Sampling Sites Description.** 

- **5** sampling were selected
- **Rwakasenyi site;** Dominant AS was *Senna spectabilis*, also cited at this site to a less extent was *Thivetia peruviana*.
- Sempaya site; Dominant AS was S. spectabilis and Cocoa.
- **Bumaga site;** Dominant AS was mainly Cocoa and to a less extent coffee (Robusta), *Senna* and *C. odorata*.
- Ntotoro site; Dominant AS was mainly Cocoa and Coffee (Robusta).
- Nsaara: Dominant AS were mainly Coffee (Robusta) and *C. odorata*. Pineapples were also observed.

# **Sampling Design**

In each site three transects at 50m intervals running from secondary into primary forest.

• Quadrants of 20x10m were laid alternately at 20m intervals as in Fig 1. (not to scale)



• In each quadrat, nests of 10x5m, 5x5m and 5x2.5m were used to collect various biological data as determined by the preliminary study/survey for each site.

Sampling cont...

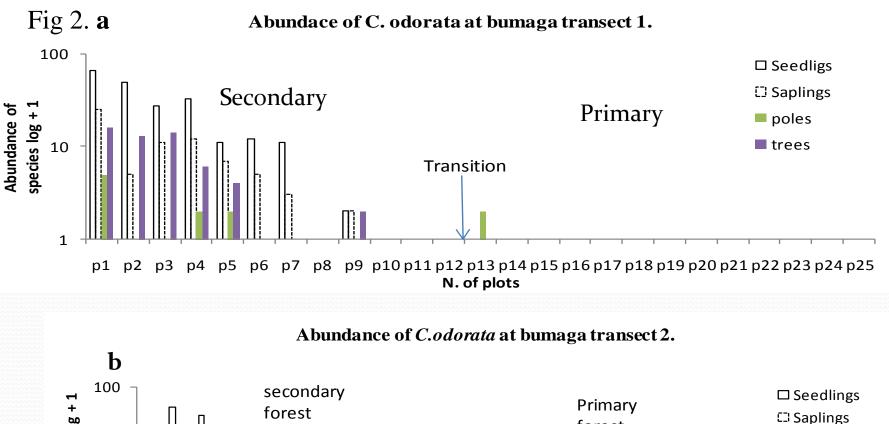
# For cocoa and coffee;

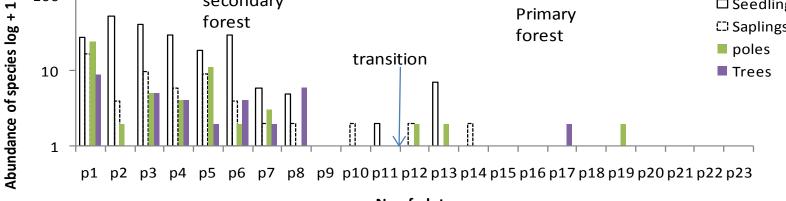
- 20x10m plot, tree stands of >6cm dbh were measured, counted and recorded.
- 10x5m plot, stands of 2-5.9cm dbh were measured, counted and recorded.
- 5x2.5m plot, seedlings were counted and recorded.
- For S. spectabilis and C. odorata;
- In the 20x10m plot, trees of >20cm dbh were measured, counted and recorded.

- In the 10x5m plot, trees of 10-19.9cm dbh were measured, counted and recorded.
- In the 5x5m plot, trees of 5-9.9cm dbh were measured counted and recorded.
- In the 5x2.5m plot, seedlings were counted and recorded.
- In all the study sites the same sampling procedure was applied in both the primary and secondary forest.
- Other environmental variables canopy cover, soil type, soil texture, soil colour, understorey, drainage, topography and forms of disturbance.

### **RESULTS AND DISCUSION**

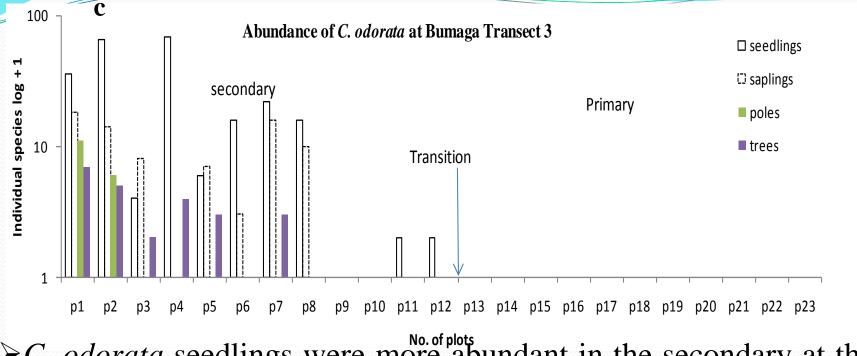
# Alien plant species abundance in primary and secondary forests/ha.


| No. Common Name  | Species                   | Family          | Secon dary<br>Forest | Primary<br>Forest | Total in<br>Study area |
|------------------|---------------------------|-----------------|----------------------|-------------------|------------------------|
| 1 American cedar | Cedrela odorata L.        | Meliaceae       | 2137                 | 267               | 2404                   |
| 2 Senna species  | Senna spectabilis (DC.)   | Caesalpiniaceae | 189                  | 24                | 213                    |
|                  | HS Irwin & Barneby        |                 | $\sim$               |                   |                        |
| 3 Cocoa          | Theobroma cacao L.        | Sterculiaceae   | 2659                 | 484               | 3143                   |
| 4 Coffee         | Coffea cane phora         | Rubiaceae       | 656                  | 562               | 1218                   |
|                  | Pierre ex A. Froehner     |                 |                      |                   |                        |
| 5 Pineapples     | Ananas comosus (L.) Merr. | Bromeliaceae    | 135                  | 84                | 219                    |
| 6 Guavas         | Psidium guajava L.        | Myrtaceae       | (2                   | ) (1              | 3                      |
| TOTAL            |                           |                 | 5778                 | 1422              | 7200                   |


### **Results cont...**

Generally the secondary forest had more species abundance than the primary forest. Species *T. cacao* had the highest abundance in the secondary forest, while.

- C. canephora had the highest abundance in the primary forest, where as P. guajava had the least.
- Findings are in line with a study by (Acharya 1999; Obiri *et al.*, 2002), also showed a significant relationship of high APS composition with areas close and accessible to local people.
- Different sites had different species abundances for both the secondary and primary forest Fig 2. *C. odorata* in the secondary forest recorded the highest number of individuals compared to the primary forest.

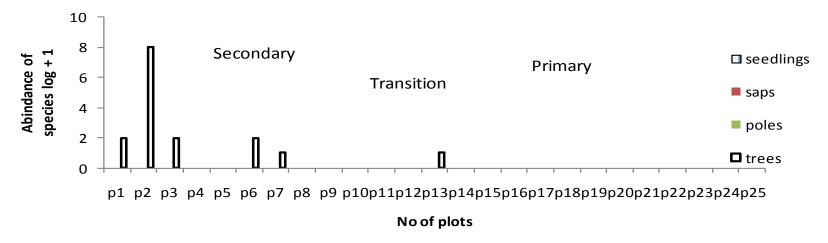

### **Results cont...**





No of plots

### results cont...

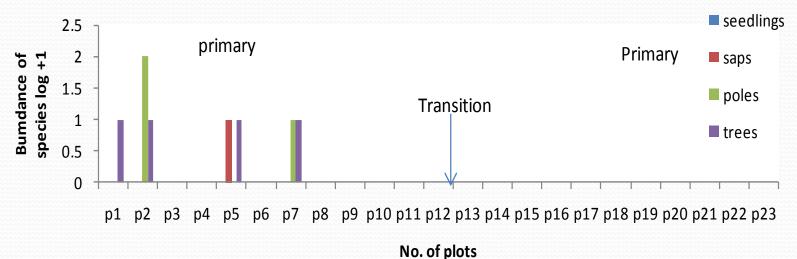



 $\succ C.$  odorata seedlings were more abundant in the secondary at the entire site.

This is line with study by (Rejmánek, *et al.*, 2005) which showed that disturbed communities are more vulnerable to invasion, while undisturbed areas are less invaded by AP.

### **Results cont..**

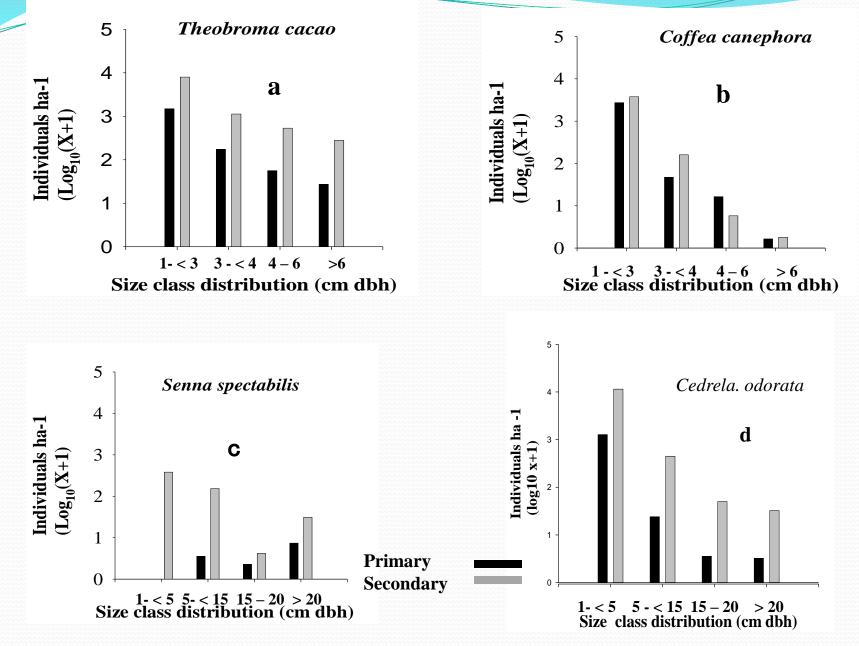
Abundance of S. spectabilis at Bumaga transect 1






No. ofPlots

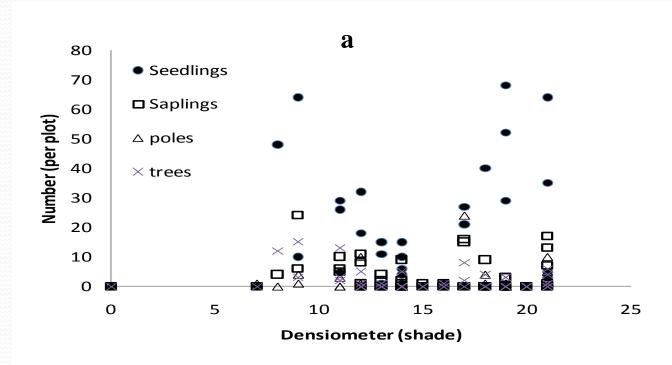
**Results cont...** 


Abundance of senna at bumaga transect 3



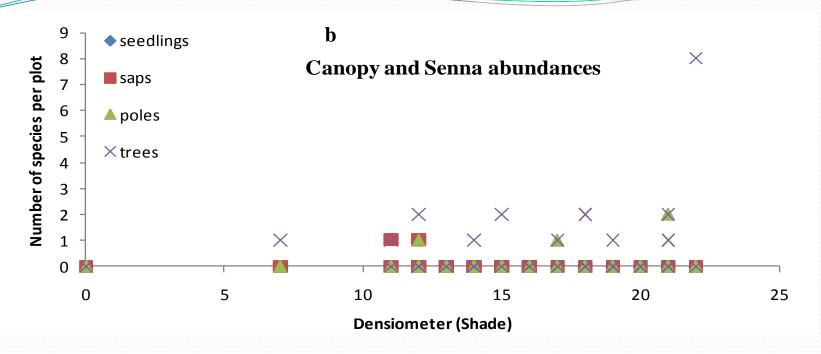
 $\succ$  S. spectabilis trees were more abundant in the secondary forest at the entire site as compared to the primary.

This is line with study by (Rejmánek, *et al.*, 2005) which showed that disturbed communities are more vulnerable to invasion, while undisturbed areas are less invaded by AP.


### **Population structure of APS in SNP (Fig. 4)**



### **Implications from the graphs**


- Fig. 4 Population structure of the alien plant species in S NP. a = T. cacao, b = C. canephora, c = S. spectabilis and d = C. odorata.
- S. spectabilis showed a degenerating population in the primary forest (Fig. 4. c).
- The species *T. cacao, C. canephora C. odorata, and* had an inverse J-shape population structure in both the primary and secondary forests (Fig. 4. a, b and d).

# Fig. 5. Relationship between canopy *C. odorata* species abundance



- Canopy cover generally increases with increase in *C. odorata* seedlings from secondary to the primary forest 5.(a)
- The high abundance of *C. odorata* seedlings the primary forest indicates high invasion potential.

### Relationship between canopy S. spectabilis abundance



- Canopy cover generally increases with increase in *S. spectabilis* trees from secondary to the primary forest 5.(b)
- The high abundance of *S. spectabilis* trees in the primary forest indicates a degenerating alien species with no potential to invade.

# **Conclusions and Recommendations**

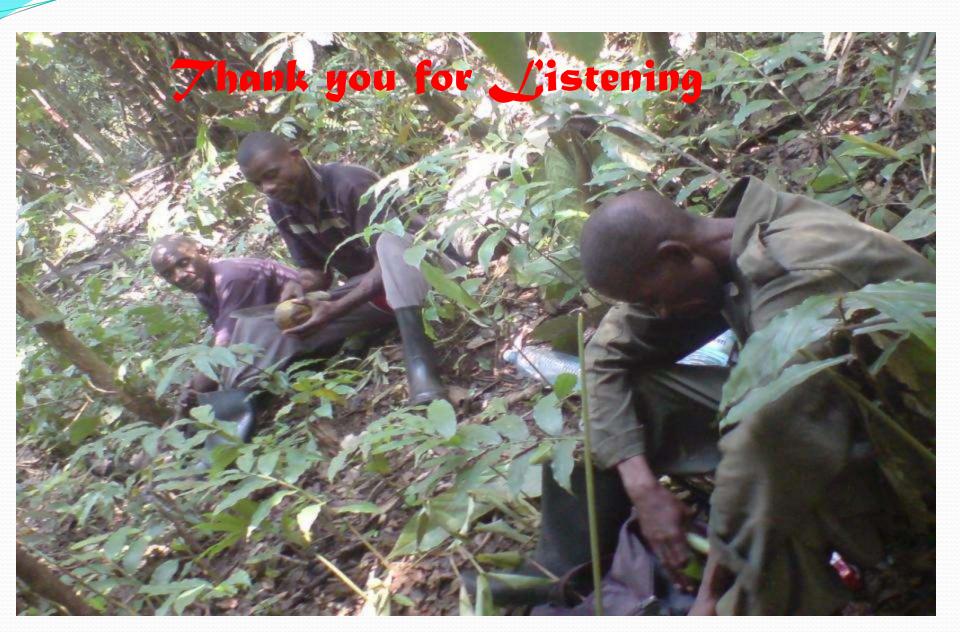
# **Conclusions.**

- From the study, *C. odorata* has exhibited some invasion potential in some sites as it is abundant in the 1<sup>o</sup> forest in seedlings stand form.
- In most sites, *S. spectabilis* species had a high abundance of old trees in both primary and secondary forests, it can therefore be concluded that they are a dyeing/degenerating population.
- Data analysis is still on going better conclusions will be drawn.

# Recommendations

- The SNP management should prepare a management plan for the plants with the potential of becoming invasive in the park.
- More studies on Senna since its invasive potential may be just inhibited by some factors not studied yet.
- Further studies in what ways alien plants (if found invasive) may exhibit/ show their invasive potential to the native plants.




### Acknowledgements

**My Supervisors** Douglas Patrick





### **Research Team**

